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The dynamics of small-scale fluctuation driven flows are of great in-
terest for micro-instability driven turbulence, since nonlinear toroidal
simulations have shown that these flows play an important role in
the regulation of the turbulence and transport levels. The gyrofluid
treatment of these flows was shown to be accurate for times shorter
than a bounce time.! Since the decorrelation times of the turbulence
are generally shorter than a bounce time, our original hypothesis was
that this description was adequate. Recent work? pointed out possible
problems with this hypothesis, emphasizing the existence of a linearly
undamped component of the flow which could build up in time and
lower the final turbulence level. While our original gyrofluid model re-
produces some aspects of the linear flow, there are differences between
the long time gyrofluid and kinetic linear results in some cases. On the
other hand, if the long time behavior of these flows is dominated by
nonlinear damping (which seems reasonable), then the existing nonlin-
ear gyrofluid simulations may be sufficiently accurate. We test these
possibilities by modifying the gyrofluid description of these flows and
diagnosing the flow evolution in nonlinear simulations.

1Beer, M. A, Ph. D. thesis, Princeton University (1995).
2Hinton, F. L., Rosenbluth, M. N., and Waltz, R. E., Sherwood (1997).



Outline

e Linear flow damping tests:
— linear initial value comparisons: gyrokinetic Vlasov code vs.
gyrofluid
— good agreement on fast linear damping rates for all %,
— standard gyrofluid model does not model residual component
accurately

e Correlation function for radial modes from gyrofluid simulations

— correlation time on the order of damping time, but not tied to
damping time (different k, dependence)

e Nonlinear flow damping tests

— nonlinear effects appear to dominate evolution of residual flow
component

e Nonlinear Gyrokinetic Particle vs. Gyrofluid comparisons
— removing residual flow component does not reduce GF vs. GKP

discrepancy

— removing flows altogether does not reduce GF vs. GKP discrep-

ancy
— good agreement for NTP test case at § = 0

— factor of 2-3 difference for other parameters



Background and Motivation

e Early toroidal gyrofluid simulations showed that ITG turbulence
can drive fluctuating sheared E x B flows which play an important
role in regulating the turbulence, by breaking up radially elongated
eddies which cause large transport [Beer, Hammett, et al., BAPS (1992);
Hammett, Beer, et al., PPCF (1993)]. Also seen in GKP simulations [Dimits,
et al., PRL (1996); Z. Lin].

o Added 1V B parallel acceleration terms to accurately model linear
E x B flow damping. Showed that gyrofluid equations accurately
model fast collisionless damping for times less than an ion bounce
time, ¢ < Thounce |Beer, Ph.D. Thesis (1995)]. Argued that long time
linear flow dynamics are not important, as nonlinear effects will
dominate long term nonlinear flow evolution.

® Hinton and Rosenbluth, submitted (1997), emphasized that there is a linearly
undamped component of the flow. This “residual” flow is damped
by collisional effects. Argued that this residual component should
grow in time ~ 4/t in the collisionless limit. Modeled nonlinear
drive term as a white noise source.

e Since present gyrofluid eqns underestimate residual component, if
residual component is important nonlinearly, gyrofluid simulations
would underestimate E: x B flow levels and overpredict ;.

e Results here indicate that residual flow component is not very im-
portant nonlinearly (except perhaps near marginal stability), and
that differences between gyrokinetic and gryofluid flow damping is
not dominant cause of discrepancy between GyroKinetic Particle

(GKP) simulations and GyroFluid (GF) simulations.



Toroidal Gyrofluid Equations for lon Species

[Beer & Hammett, PoP 3, 4046 (1996)]

For ions, evolve moments of nonlinear electrostatic toroidal gyrokinetic
eqn. (TL u, Th, TJ_, q QJ_) [Frleman&Chen Lee, Dubin, Krommes, Hahm]
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e cach moment equation has EE X B nonlinear term

e toroidal terms: iwy = (¢T/eB*)B x VB -V

e trapped ion CGL terms, ion-ion collisions (v;;)

e FLR closures, %, %



Gyrokinetic Vlasov Code for Linear Damping
Comparisons

e made slight modifications to Liu’s initial value Vlasov code [Liu &
Cheng, BAPS 38, 2102 (1993)]

e solves for nonadiabatic part of distribution function on a velocity
space grid, h(vy, i), in flux-tube coordinates:
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and quasineutrality.

e For flow damping tests, initial condition is ®(r) and h(v, p1) is a
Maxwellian.

e Typical numerical parameters: 30 ¢ grid pts, 60 v grid pts, 60 u

grid pts, vﬁnax = v"™ = Tuy



<vg>

0.5

—-0.5

Comparison of Gyrokinetic and Gyrofluid Flow

Damping

Fast linear damping rates agree very well

Varying k,:

Gyrokinetic:

k=1
k=2
k =4

Gyrofluid:

10
time (qR/v,)

Residual flow not modeled accurately by standard gyrofluid equations,

as trapped particle dynamics are important, and our models of trapped

ion dynamics are approximate.

When there is a gyrofluid residual perpendicular flow, it is usually in

uy, not vp.
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Different initial conditions:

(1) ®(r) only (and comparison with Z. Lin’'s GKP code,dashed)

(2) ©(r) and a small parallel flow, 1 (6), to avoid exciting || sound

Waves

time (qR/v,)

Evidence of two eigenmodes: one with zero real frequency, the other
with finite real frequency (Global Acoustic Mode) [Winsor, Johnson, Dawson,
PF (1968)]. Both eigenmodes have damping time on the order of a few
transit times. Similar results found in [Novakovskii, et al., submitted (1997),

Lebedev, et al. PoP (1996)].



Varying ¢:

Gyrokinetic: Gyrofluid:




Calculation of Flow Spectra and Correlation
Functions

Flow spectra and correlation functions are calculated from the time
history of the flux surface averaged potential, (®(r,t)), from the
saturated phase of a nonlinear run for DIIID #81499 parameters at
p=0.>55=.776,q=1.4,n=3.11,¢, =045 1T, =T.,.




Time Averaged Flow Spectrum

Spectrum of saturated flux surface averaged potential |® (£, )| obtained
by Fourier Transforming in r and averaging in .

1.5

0.5

Shearing rate peaks at high %,: Yapear = k2| ()]

While highest £, shearing rates are large, they have small correlation
times. Maximum y;, ~ 0.1
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Phi(t)

Flow Correlation Functions

After transforming in 7, the correlation function can be obtained from
the time series ®(k,., t):

C(t) = /dt e_MCI)*CI)(w)

A least squares fit to the numerical data of the form C(t) = e e is
also shown
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Teorr VS. K, similar to measurements by Coda [this meeting (1997)]:
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Tests of Impertance of Residual Flew

Since the fast damping is controlled by parallel damping (the |k;|
closure terms) and the long time residual is controlled by the toroidal
terms (|wq| closure terms), we can change the long time linear flow
behavior without changing the fast linear damping by changing the
toroidal closure coefficients or turning off the |w,| terms only for the
flows ( k£, = 0 components).

These tests are not using our standard closure coefficients, which do
give a long time flow instablilty.

Linear damping of flows:
(1) with |wg| closure terms for k, = 0 (solid)
(2) without |wy| closure terms for k, = () (dashed)
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Then for the same two cases, nonlinear runs:
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X;'s are similar, implying that long time differences in the linear flow
behavior are not affecting transport

Parameters for these testsare s =1, g =1,¢, =0.1, n; = 3, e = 0.1,

For other parameters, with weaker turbulence, the flow instabilities can
grow up and y; — 0. This never happens with our standard closure
terms, which do not lead to a flow instability.



Flow spectra are similar, implying that flow saturation levels are deter-
mined by the balance between nonlinear drive/damping and the fast
linear damping.
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Gyrofluid /Gyrokinetic Flux-tube Simulation
Comparisons: NTP test case with § =0

Thanks to Andris Dimits for GKP results in comparison sections.
Earlier results by Hammett showed that a ® filter of the form:
6—(57@,02')4

[+ (Bhapi) L+ (B Ry A )T
as used in GKP simulations, brought GF and GKP into agreement.
These runs used a 64 x 64 x 64 grid.
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Perpendicular filter has largest effect.



Running with higher resolution (96 x 96 x 32) brings GF results into
agreement with GKP with or without filter.
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Gyrofluid /Gyrokinetic Flux-tube Simulation
Comparisons: NTP test case with § # 0

For NTP test case with § = 1.5, GF x; is about 2x GKP y;, even at
high resolution, with and without filter.

Parameters taken from TFTR L-mode:
s=15,g=24,n=4,¢,=04,¢=02,1T, =1,

15 N A | B — x
L GF 48x96x32 _
L GF 96x96x32, no filter _
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Numerical resolution issues require further investigation.



Linear Comparisons for DIIID #81499

parameters ar p = 0.5

§s=0.78,g=14,7n=3.11,¢,=0.45 € =0.18, T; =T,
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Overall good agreement in linear growth rates. Possible discrepancies
at low ky?



Nonlinear Comparisons for DIIID #81499

parameters ar p = 0.5

<20
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time (L,/v,)

For this case, GKP y; is lower than GF ; by a factor of 3.3.



Gyrofluid /Gyrokinetic Comparisons:
€ scan to test Hinton-Rosenbluth effect

The amount of residual flow after an initial flow perturbation has

damped away is controlled by € = /R, as given by Hinton & Rosen-
bluth (HR) and verified by Dimits (who found ¢ = 0.6, HR found

c=1/1.6 =0.625):
VEr C\ﬁ/q2

Ve 14 eVelq
Residual flow component and HR effect can be turned off by taking
e — 0.




12 ti/Lne)

X, (p

Dimits reported an ¢ scan for the NTP test case parameters in his
|AEA (1994) paper which we repeated with GF simulations.
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Ratio of xr /XK does not go to zero as residual flow and HR effect
is turned off.
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Indicates that HR effect is not dominant source of GF vs. GKP dis-
crepancy



Similar results for DIIID #81499 parameters. Dimits also sees y; drop
by 2 when € = 0.
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Effect of Zeroing Flows: ($)=0

For DIIID #81499 parameters:
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Dimits sees x; increase from 2.5 to 20 when (®)=0. Indicates that
differences in flow dynamics cannot explain full GF vs. GKP discrep-
ancy



Conclusions

e Linear flow damping tests show good agreement between gyroki-
netic and gyrofluid fast linear damping rates for all &,

e Standard gyrofluid model does not model residual component ac-
curately

e Correlation time of radial modes is on the order of damping time,
but longer than damping time for low £,

e Nonlinear effects appear to dominate evolution of residual flow
component

e Nonlinear GyroKinetic Particle (GKP) vs. GyroFluid (GF) compar-

ISONS:

— GF/GKP discrepancy is typically 2-3. Not understood at present.
Good agreement at § = 0 for NTP case.

— Differences in linear radial mode dynamics do not appear to
be the cause of GF/GKP discrepancy, except perhaps near
marginal stability
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Frequency Spectra for k; > 0 Modes

Gyrofluid frequency spectra seem broader than GKP spectra, possible

source

of GF/GKP discrepancy?
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